TY - JOUR
T1 - Increased PHOSPHO1 expression mediates cortical bone mineral density in renal osteodystrophy
AU - Hsu, Shun-Neng
AU - Stephen, Louise
AU - Dillon, Scott
AU - Milne, Elspeth
AU - Javaheri, B
AU - Pitsillides, Andrew
AU - Novak, Amanda
AU - Millan, JL
AU - MacRae, VE
AU - Staines, Katherine
AU - Farquharson, Colin
PY - 2022/8/12
Y1 - 2022/8/12
N2 - Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities; a condition known as renal osteodystrophy (ROD). While Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both wild-type and Phospho1 knockout (P1KO) mice using dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone (p < 0.05) but decreased in trabecular bone (p < 0.05). These changes were accompanied by decreased TNAP (p < 0.01) and increased PHOSPHO1 (p < 0.001) expression in wild-type CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expression to be down-regulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.
AB - Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities; a condition known as renal osteodystrophy (ROD). While Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both wild-type and Phospho1 knockout (P1KO) mice using dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone (p < 0.05) but decreased in trabecular bone (p < 0.05). These changes were accompanied by decreased TNAP (p < 0.01) and increased PHOSPHO1 (p < 0.001) expression in wild-type CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expression to be down-regulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.
KW - bone mineralization
KW - bone mineral density
KW - chronic kidney disease-mineral bone disorder
KW - renal osteodystrophy
KW - PHOSPHO1
KW - TNAP
U2 - 10.1530/JOE-22-0097
DO - 10.1530/JOE-22-0097
M3 - Article
VL - 254
SP - 153
EP - 167
JO - Journal of Endocrinology
JF - Journal of Endocrinology
SN - 0022-0795
IS - 3
ER -